Solutions of Linear Equation Systems

Introduction

- Many engineering and scientific problems can be formulated in terms of systems of simultaneous linear equations.
- When these systems consist of only a few equations, a solution can be found analytically using the standard methods from algebra, such as substitution.
- However, complex problems may involve a large number of equations that cannot realistically be solved using analytical methods.
- In these cases, we will need to find the solution numerically using computers.

Example: Material Purchasing for Manufacturing

- Let us assume that a manufacturer is marketing a product made of an alloy material meeting a certain specified composition.
- The three critical ingredients of the alloy are manganese, silicon, and copper. The specifications require 15 pounds of manganese, 22 pounds of silicon, and 39 pounds of copper for each ton of alloy to be produced.
- This mix of ingredients requires the manufacturer to obtain inputs from three different mining suppliers.
- Ore from the different suppliers has different concentrations of the alloy ingredients, as detailed in Table.
- Given this information, the manufacturer must determine the quantity of ore to purchase from each supplier so that the alloy ingredients are not wasted.

TABLE 5.1 Concentration of Alloy Ingredients for Three Suppliers

Solution

Supplier 1	Supplier 2	Supplier 3
(lb/ton of Ore)	(lb/ton of Ore)	(lb/ton of Ore)

Manganese	1	3	2
Silicon	2	4	3
Copper	3	4	7

$X_{j}=$ amount of ore purchased from supplier j
$C_{i}=$ amount of ingredient i required per ton of alloy
$a_{i j}=$ amount of ingredient i contained in each ton of ore shipped from supplier j

Using these notations, we can formulate a general equation that defines
(1) the relationships among the compositions of the ore shipped by the different suppliers,
(2) the amount of ore needed from each supplier, and
(3) the required composition of the final alloy as

$$
\sum_{j=1}^{n} a_{i j} X_{j}=C_{i} \quad \text { for } i=1,2, \ldots, m
$$

in which m is the number of ingredients and n is the number of suppliers. For the case under consideration, both m and n equal 3 .

$$
\begin{gathered}
X_{1}+3 X_{2}+2 X_{3}=15 \\
2 X_{1}+4 X_{2}+3 X_{3}=22 \\
3 X_{1}+4 X_{2}+7 X_{3}=39
\end{gathered}
$$

Example 2: Electrical Circuit Analysis

Current flows in circuits are governed by Kirchhoff's laws.

- Kirchhoff's first law states that the algebraic sum of the currents flowing into a junction of a circuit must equal zero.
- Kirchhoff's second law states that the algebraic sum of the electromotive forces around a closed circuit must equal the sum of the voltage drops around the circuit, where a voltage drop equals the product of the current and the resistance-

Example 2: Electrical Circuit Analysis

Applying Kirchhoff's first law at junction c

$$
I_{1}+I_{2}-I_{3}=0
$$

Applying Kirchhoff's second law to network loop acdb

$$
V_{1}=R_{1} I_{1}+R_{3} I_{3}
$$

Applying Kirchhoff's second law to network loop aefb

$$
V_{1}-V_{2}=R_{1} I_{1}-R_{2} I_{2}
$$

Assume that $R_{1}=2, R_{2}=4, R_{3}=5, V_{1}=6$, and $V_{2}=2$

$$
\begin{aligned}
I_{1}+I_{2}-I_{3} & =0 \\
2 I_{1}+5 I_{3} & =6 \\
2 I_{1}-4 I_{2} & =4
\end{aligned}
$$

General Form For A System of Equations

$$
\begin{aligned}
& a_{11} X_{1}+a_{12} X_{2}+\cdots+a_{1 n} X_{n}=C_{1} \\
& a_{21} X_{1}+a_{22} X_{2}+\cdots+a_{2 n} X_{n}=C_{2}
\end{aligned}
$$

$$
\vdots
$$

$$
a_{n 1} X_{1}+a_{n 2} X_{2}+\cdots+a_{n n} X_{n}=C_{n}
$$

in which the $a_{i j}$ terms are the known coefficients of the equations, the X_{j} terms are the unknown variables, and the C_{i} terms are the known constants.

Since values for both the $a_{i j}$ and C_{i} terms will be known for any problem, the system of equations represents n linear equations with n unknowns.

Iterative Equation-Solving Methods

- Linear equations can be solved by
- Direct equation-solving methods like the Gaussian elimination method
- the solution is found after a fixed, predictable number of operations
- A trial-and-error procedure or iterative methods.
- the number of operations required to obtain a solution is not fixed
- a major advantage of iterative methods is that they can be used to solve nonlinear simultaneous equations, a task that is not possible using direct elimination methods

Two of the most common methods,

- The Jacobi and
- Gauss- Seidel procedures

Jacobi Iteration

Idea:

$$
a x=b \quad \begin{array}{ll}
\text { for a single linear equation with a single } \\
\text { unknown, it is straightforward to solve for the } \\
\text { unknown }
\end{array} \quad x=\frac{b}{a}
$$

what if: $a_{11} x_{1}+a_{12} x_{2}=b_{1}$ solve eq 1 for $x_{1} x_{1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}\right)$

$$
a_{21} x_{1}+a_{22} x_{2}=b_{2} \text { solve eq } 2 \text { for } x_{2} x_{2}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}\right)
$$

Jacobi Iteration

What if we start with guesses for those values, call those

$$
\begin{aligned}
& \text { guesses: } x_{1}^{0} \text { and } x_{2}^{0} \\
& x_{1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{0}\right) \quad x_{2}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{0}\right)
\end{aligned}
$$

The equations above act as an "update" or "correction" to the guesses. To make things clearer, rename the updates to: x_{1}^{1}

$$
\begin{gathered}
\text { and } x_{2}^{1} \\
x_{1}^{1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{0}\right) \quad x_{2}^{1}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{0}\right) \\
\text { Now repeat! }
\end{gathered}
$$

Jacobi Iteration

$$
\begin{array}{cc}
x_{1}^{1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{0}\right) & x_{2}^{1}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{0}\right) \\
x_{1}^{2}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{1}\right) & \text { Now repeat! } \\
x_{1}^{3}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{3}\right) & x_{2}^{2}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{1}\right) \\
\vdots & x_{2}^{3}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{3}\right) \\
\mathbf{k} \text { is an iteration counter } \quad \vdots
\end{array}
$$

$$
x_{1}^{k+1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{k}\right) \quad x_{2}^{k+1}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{k}\right)
$$

Jacobi Iteration Generalization

Example: 3 linear equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3} \\
& x_{1}^{k+1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}^{k}-a_{13} x_{3}^{k}\right) \longrightarrow x_{1}^{k+1}=x_{1}^{k}+\frac{1}{a_{11}}\left(b_{1}-a_{11} x_{1}^{k}-a_{12} x_{2}^{k}-a_{13} x_{3}^{k}\right) \\
& x_{2}^{k+1}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{k}-a_{23} x_{3}^{k}\right) \longrightarrow x_{2}^{k+1}=x_{2}^{k}+\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}^{k}-a_{22} x_{2}^{k}-a_{23} x_{3}^{k}\right) \\
& x_{3}^{k+1}=\frac{1}{a_{33}}\left(b_{3}-a_{31} x_{1}^{k}-a_{32} x_{2}^{k}\right) \longrightarrow x_{3}^{k+1}=x_{3}^{k}+\frac{1}{a_{33}}\left(b_{2}-a_{31} x_{1}^{k}-a_{32} x_{2}^{k}-a_{33} x_{3}^{k}\right)
\end{aligned}
$$

Jacobi Iteration Generalization

In general, for an $n \times n$ system

$$
x_{i}^{k+1}=x_{i}^{k}+\frac{1}{a_{i i}}\left(b_{i}-\sum_{j}^{n} a_{i j} x_{j}^{k}\right)
$$

Jacobi Iteration Generalization

Jacobi Algorithm:

1. Guess x_{i}
2.Update guess for each x_{i}, starting with $i=0$ according to

$$
x_{i}^{k+1}=x_{i}^{k}+\frac{1}{a_{i i}}\left(b_{i}-\sum_{j}^{n} a_{i j} x_{j}^{k}\right)
$$

3. Repeat step 2 until iteration count has been reached
or
The acceptable difference is set by the user and influenced by the need for accuracy.

Example: Jacobi Iteration

Given the following set of equations, solve for values of the unknowns using Jacobi iteration:

$$
\begin{gathered}
3 X_{1}+X_{2}-2 X_{3}=9 \\
-X_{1}+4 X_{2}-3 X_{3}=-8 \\
X_{1}-X_{2}+4 X_{3}=1
\end{gathered}
$$

Solution

$$
\begin{array}{lr}
X_{1}=\frac{9-X_{2}+2 X_{3}}{3} & \begin{array}{l}
\text { values of } X_{1}=X_{2}=X_{3}=1 \text { for this initial } \\
\text { estimate are assumed. }
\end{array} \\
X_{2}=\frac{-8+X_{1}+3 X_{3}}{4} & X_{1}=\frac{9-1+2(1)}{3}=\frac{10}{3} \\
X_{2}=\frac{-8+1+3(1)}{4}=-1 \\
X_{3}=\frac{1-X_{1}+X_{2}}{4} & X_{3}=\frac{1-1+1}{4}=\frac{1}{4}
\end{array}
$$

These new values for X_{1}, X_{2}, and X_{3} are then used as the new solution estimate.

$$
\begin{aligned}
& X_{1}=\frac{9-(-1)+2\left(\frac{1}{4}\right)}{3}=\frac{7}{2} \\
& X_{2}=\frac{-8+\frac{10}{3}+3\left(\frac{1}{4}\right)}{4}=-\frac{47}{48}
\end{aligned}
$$

This process is repeated until the differences between the previous values and the new values are small.

$$
X_{3}=\frac{1-\frac{10}{3}+(-1)}{4}=-\frac{5}{6}
$$

Iteration	$\boldsymbol{X}_{\mathbf{1}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{1}}\right\|$	$\boldsymbol{X}_{\mathbf{2}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{2}}\right\|$	$\boldsymbol{X}_{\mathbf{3}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{3}}\right\|$
0	1	-	1	-	1	-
1	3.333	2.333	-1.000	2.000	0.250	0.750
2	3.500	0.167	-0.979	0.021	-0.833	1.083
3	2.771	0.729	-1.750	0.771	-0.870	0.036
4	3.003	0.233	-1.960	0.210	-0.880	0.010
5	3.066	0.063	-1.909	0.050	-0.991	0.111
6	2.976	0.090	-1.976	0.067	-0.994	0.003
7	2.996	0.020	-2.001	0.025	-0.988	0.006
8	3.008	0.012	-1.992	0.009	-0.999	0.011
9	2.998	0.011	-1.997	0.005	-1.000	0.001
10	2.999	0.001	-2.001	0.003	-0.999	0.001
11	3.001	0.002	-1.999	0.001	-1.000	0.001
12	3.000	0.001	-2.000	0.000	-1.000	0.001

If a maximum absolute change of less than 0.05

Using a fixed number of iterations can be inefficient.

We need a way to tell the solver to stop the iterations.

Convergence: When to Stop Iterating?

Successive calculations (iteration) continue until the tolerance value (TD) is satisfied

$$
\left|x_{i}^{(k+1)}-x_{i}^{(k)}\right| \leq T D \quad(i=1,2, \ldots, n)
$$

Gauss-Seidel Iteration (Multi-Step Iteration)

It is quite similar to the Jacobi method.

- The only difference is; Substituting the calculated x_{i} value into the next equation.
Idea: Always use most recent information.

Gauss-Seidel Algorithm

1. Guess x_{i}.

2. Update guess for each x_{i}, starting with $i=1$. Use most recent information when calculating each x_{i}. Gauss-Seidel Update: $x_{i}=x_{i}+\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right)$
3. Repeat step 2 until convergence is obtained.

Example

Solve: the following system of equations by taking $T D=0.05$
An initial solution estimate of $X_{1}=X_{2}=X_{3}=1$

$$
\begin{aligned}
-X_{1}+4 X_{2}-3 X_{3}=-8 & \longrightarrow X_{1}=8+4 X_{2}-3 X_{3} \\
3 X_{1}+X_{2}-2 X_{3}=9 & \longrightarrow X_{2}=9-3 X_{1}+2 X_{3}
\end{aligned}
$$

$$
X_{1}-X_{2}+4 X_{3}=1 \longrightarrow X_{3}=\frac{1-X_{1}+X_{2}}{4}
$$

Divergence of Gauss-Seidel Iteration

Iteration	$\boldsymbol{X}_{\mathbf{1}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{1}}\right\|$	$\boldsymbol{X}_{\mathbf{2}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{2}}\right\|$	$\boldsymbol{X}_{\mathbf{3}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{3}}\right\|$
0	1	-	1	-	1	-
1	9	8	-16	17	-6	7
2	-38	47	111	127	37.5	43.5
3	339.5	377.5	-934.5	1045.5	-318.25	355.75

If we re-arrange equations like

$$
\begin{array}{cl}
-X_{1}+4 X_{2}-3 X_{3}=-8 \\
3 X_{1}+X_{2}-2 X_{3}=9 & \\
& 3 X_{1}+X_{2}-2 X_{3}=9 \\
X_{1}-X_{2}+4 X_{2}-3 X_{3}= \\
& \longrightarrow X_{1}-X_{2}+4 X_{3}=1
\end{array}
$$

The first iteration cycle

$$
\begin{aligned}
& X_{1}=\frac{9-X_{2}+2 X_{3}}{3} \\
& X_{2}=\frac{-8+X_{1}+3 X_{3}}{4} \\
& X_{3}=\frac{1-X_{1}+X_{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& X_{1}=\frac{9-1+2(1)}{3}=3.333 \\
& X_{2}=\frac{-8+3.333+3(1)}{4}=-0.417 \\
& X_{3}=\frac{1-3.333+(-0.417)}{4}=-0.688
\end{aligned}
$$

The second iteration cycle

$$
\begin{aligned}
& X_{1}=\frac{9-(-0.417)+2(-0.688)}{3}=2.680 \\
& X_{2}=\frac{-8+2.680+3(-0.688)}{4}=-1.845 \\
& X_{3}=\frac{1-2.680+(-1.845)}{4}=-0.882
\end{aligned}
$$

Iteration	$\boldsymbol{X}_{\mathbf{1}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{1}}\right\|$	$\boldsymbol{X}_{\mathbf{2}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{2}}\right\|$	$\boldsymbol{X}_{\mathbf{3}}$	$\left\|\boldsymbol{\Delta} \boldsymbol{X}_{\mathbf{3}}\right\|$
0	1	-	1	-	1	-
1	3.333	2.333	-0.417	1.417	-0.688	1.688
2	2.680	0.348	-1.845	1.428	-0.882	0.194
3	3.027	0.346	-1.904	0.059	-0.983	0.101
4	2.979	0.048	-1.992	0.088	-0.993	0.010
5	3.002	0.023	-1.994	0.002	-0.999	0.006
6	2.999	0.003	-2.000	0.006	-1.000	0.001
7	3.000	0.001	-2.000	0.000	-1.000	0.000
8	3.000	0.000	-2.000	0.000	-1.000	0.000

PIVOTING

- Pivoting is the displacement of rows in the coefficient matrix so that the diagonal elements are maximized in absolute value.

Row Pivoting

$\left[\begin{array}{lll}0 & 1 & 3 \\ 0 & 2 & 1 \\ 4 & 1 & 2\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$
$\left[\begin{array}{lll}4 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 1 & 3\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}b_{3} \\ b_{2} \\ b_{1}\end{array}\right)$

Column Pivoting

$$
\left[\begin{array}{lll}
0 & 1 & 3 \\
0 & 2 & 1 \\
4 & 1 & 2
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

$$
\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 2 & 0 \\
2 & 1 & 4
\end{array}\right]\left(\begin{array}{l}
x_{3} \\
x_{2} \\
x_{1}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

MATRICES

The case of determining the values $x_{1}, x_{2}, \ldots, x_{n}$ that simultaneously satisfy a set of equations

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
\end{aligned}
$$

(General set of equations)

$$
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
$$

- Such systems can be either linear or nonlinear. Linear algebraic equations that are of the general form

$$
\begin{array}{cl}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} & \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} & \text { where } \\
\cdot & \text { the } a \text { 's are constant coefficients, } \\
\cdot & \cdot \\
\cdot & \text { the } b \text { 's are constants, and } \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} & n \text { is the number of equations. }
\end{array}
$$

- The system of linear equations given can be represented in matrix form:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
[A]\{x\}=\{b\}
$$

where $\quad[A]$ is $n \times n$ Coefficient matrix

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
$$

$\{x\}$ is $n x 1$ Unknown vector
$\{b\}$ is $n x 1$ Right-hand side (RHS) vector

4.2 Matrix

- A matrix consists of a rectangular array of elements represented by a single symbol.
- $[A]$ is the shorthand notation for the matrix and $a_{i j}$ designates an individual element of the matrix.
- A horizontal set of elements is called a row and a vertical set is called a column. The first subscript i always designates the number of the row in which the element lies. The second subscript j designates the column.

Row Vector: Matrices with row dimension $n=1$, such as

$$
[B]=\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{m}
\end{array}\right]
$$

Column Vector: Matrices with column dimension $n=1$, such as

$$
[C]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]
$$

Square Matrix: Matrices where $n=m$ are called square matrices. For example, a 4 by 4 matrix is

$$
[A]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

The diagonal consisting of the elements a_{11}, a_{22}, a_{33}, and a_{44} is termed the principal or main diagonal of the matrix.

4.2.1 Special Types of Square Matrix

- A symmetric matrix is one where $a_{i j}=a_{j i}$ for all i 's and j 's. For example, $[A]=\left[\begin{array}{lll}5 & 1 & 2 \\ 1 & 3 & 7 \\ 2 & 7 & 8\end{array}\right]$ is a 3 by
3 symmetric matrix.
- A diagonal matrix is a square matrix where all elements off the main diagonal are equal to zero, as in

$$
[A]=\left[\begin{array}{llll}
a_{11} & & & \\
& a_{22} & & \\
& & a_{33} & \\
& & & a_{44}
\end{array}\right]
$$

Note that where large blocks of elements are zero, they are left blank.

- An identity matrix is a diagonal matrix where all elements on the main diagonal are equal to 1 , as in

$$
[A]=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right]
$$

The symbol $[I]$ is used to denote the identity matrix. The identity matrix has properties similar to unity.

- An upper triangular matrix is one where all the elements below the main diagonal are zero, as in

$$
[A]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
& a_{22} & a_{23} & a_{24} \\
& & a_{33} & a_{34} \\
& & & a_{44}
\end{array}\right]
$$

- An lower triangular matrix is one where all the elements above the main diagonal are zero, as in

$$
[A]=\left[\begin{array}{llll}
a_{11} & & & \\
a_{21} & a_{22} & & \\
a_{31} & a_{32} & a_{33} & \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]
$$

$$
[A]=\left[\begin{array}{llll}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & a_{23} & \\
& a_{32} & a_{33} & a_{34} \\
& & a_{43} & a_{44}
\end{array}\right]
$$

4.2.2 Matrix Operations

- Addition of two matrices, say, $[A]$ and $[B]$, is accomplished by adding corresponding terms in each matrix. The elements of the resulting matrix $[C]$ are computed,

$$
c_{i j}=a_{i j}+b_{i j} \quad \text { for } i=1,2, \ldots, n \text { and } j=1,2, \ldots, m .
$$

- Similarly, the subtraction of two matrices, say, $[E]$ minus $[F]$, is obtained by subtracting corresponding terms, as in

$$
d_{i j}=e_{i j}-f_{i j} \quad \text { for } i=1,2, \ldots, n \text { and } j=1,2, \ldots, m \text {. }
$$

- Addition and subtraction can be performed only between matrices having the same dimensions.
- Both addition and subtraction are commutative:

$$
[A]+[B]=[B]+[A]
$$

- Addition and subtraction are also associative, that is,

$$
([A]+[B])+[C]=[A]+([B]+[C])
$$

- The multiplication of a matrix $[A]$ by a scalar g is obtained by multiplying every element of $[A]$ by g, as in

$$
[D]=g[A]=\left[\begin{array}{cccc}
g a_{11} & g a_{12} & \cdots & g a_{1 m} \\
g a_{21} & g a_{22} & \cdots & g a_{2 m} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
g a_{n 1} & g a_{n 2} & \cdots & g a_{n m}
\end{array}\right]
$$

- The product of two matrices is represented as $[C]=[A][B]$, where the elements of $[C]$ are defined as

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

where $n=$ the column dimension of $[A]$ and the row dimension of $[B]$. That is, the $c_{i j}$ element is obtained by adding the product of individual elements from the i th row of the first matrix, in this case $[A]$, by the j th column of the second matrix $[B]$.

- According to this definition, multiplication of two matrices can be performed only if the first matrix has as many columns as the number of rows in the second matrix.

- Suppose that we want to multiply $[X]$ by $[Y]$ to yield $[Z], \quad[Z]=[X][Y]=\left[\begin{array}{ll}3 & 1 \\ 8 & 6 \\ 0 & 4\end{array}\right]\left[\begin{array}{ll}5 & 9 \\ 7 & 2\end{array}\right]$
- A simple way to visualize the computation of $[Z]$ is to raise $[Y]$, as in

$$
\begin{gathered}
\begin{array}{c}
\Uparrow \\
{\left[\begin{array}{ll}
5 & 9 \\
7 & 2
\end{array}\right]}
\end{array} \leftarrow[Y] \\
{[X] \rightarrow\left[\begin{array}{ll}
3 & 1 \\
8 & 6 \\
0 & 4
\end{array}\right]\left[\begin{array}{l}
? \\
\hline
\end{array}\right] \leftarrow[Z]}
\end{gathered} \stackrel{\square}{\left[\begin{array}{ll}
\mathbf{3} & \mathbf{1} \\
8 & 6 \\
0 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ll}
\mathbf{3} \times \mathbf{5}+\mathbf{1} \times \mathbf{7}=\mathbf{2 2} \\
7 & 9 \\
7
\end{array}\right]} \begin{gathered}
{\left[\begin{array}{ll}
\mathbf{5} & 9
\end{array}\right]} \\
{[Z]=\left[\begin{array}{ll}
22 & 29 \\
82 & 84 \\
28 & 8
\end{array}\right]}
\end{gathered}
$$

- If the dimensions of the matrices are suitable, matrix multiplication is associative,

$$
([A][B])[C]=[A]([B][C])
$$

- and distributive,

$$
\begin{aligned}
{[A]([B]+[C]) } & =[A][B]+[A][C] \\
& \text { or } \\
([A]+[B])[C] & =[A][C]+[B][C]
\end{aligned}
$$

- However, multiplication is not generally commutative:

$$
[A][B] \neq[B][A]
$$

- The transpose of a matrix involves transforming its rows into columns and its columns into rows.

$$
[A]=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right] \quad \neg[A]^{T}=\left[\begin{array}{llll}
a_{11} & a_{21} & a_{31} & a_{41} \\
a_{12} & a_{22} & a_{32} & a_{42} \\
a_{13} & a_{23} & a_{33} & a_{43} \\
a_{14} & a_{24} & a_{34} & a_{44}
\end{array}\right]
$$

- In other words, the element $a_{i j}$ of the transpose is equal to the $a_{j i}$ element of the original matrix.
- The trace of a matrix is the sum of the elements on its principal diagonal. It is designated as $\operatorname{tr}[A]$ and is computed as

$$
\operatorname{tr}[A]=\sum_{i=1}^{n} a_{i i}
$$

- If a matrix $[A]$ is square and nonsingular, there is another matrix $[A]^{-1}$, called the inverse of $[A]$, for which

$$
[A][A]^{-1}=[A]^{-1}[A]=[I]
$$

- The inverse of a two-dimensional square matrix can be represented simply by

$$
[A]^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{rr}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

- The determiant of a matrix is equal to the sum of the products of all elements in any row or column by their cofactors.

$$
\operatorname{det}(A)=|A|=\left|\begin{array}{ccccccccc}
a_{l l} & a_{l 2} & a_{l 3} & \cdots & a_{l i} & \cdots & a_{l j} & \cdots & a_{l N} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 i} & \cdots & a_{2 j} & \cdots & a_{2 N} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 i} & \cdots & a_{3 j} & \cdots & a_{3 N} \\
\cdots & \cdots \\
a_{i l} & a_{i 2} & a_{i 3} & \cdots & a_{i i} & \cdots & a_{i j} & \cdots & a_{i N} \\
\cdots & \cdots \\
a_{j 1} & a_{j 2} & a_{j 3} & \cdots & a_{j i} & \cdots & a_{i j} & \cdots & a_{j N} \\
\cdots & \cdots \\
a_{N 1} & a_{N 2} & a_{N 3} & \cdots & a_{N i} & \cdots & a_{N j} & \cdots & a_{N N}
\end{array}\right|=\sum_{i=1}^{N} a_{i k} M_{i k}(-l)^{i+k}=\sum_{j=l}^{N} a_{k j} M_{k j}(-l)^{k+j}
$$

Cofactor matrix M is the matrix composed of multiplication of the minors of A by $(-1)^{i+j}$:

Example: Calculate the determinant and inverse of matrix A.
We need the cofactor matrix C of A to find the inverse and determinant of matrix A :

$$
A=\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right]
$$

$$
\begin{aligned}
& C=\left[\begin{array}{ccc}
\left|\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right| & -\left|\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right| & \left|\begin{array}{ll}
1 & 4 \\
1 & 3
\end{array}\right| \\
-\left|\begin{array}{lll}
3 & 3 \\
3 & 4
\end{array}\right| & \left|\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right| & -\left|\begin{array}{cc}
1 & 3 \\
1 & 3
\end{array}\right| \\
\left|\begin{array}{lll}
3 & 3 \\
4 & 3
\end{array}\right| & -\left|\begin{array}{ccc}
1 & 3 \\
1 & 3
\end{array}\right| & \left|\begin{array}{ccc}
1 & 3 \\
1 & 4
\end{array}\right|
\end{array}\right]=\left[\begin{array}{ccc}
7 & -1 & -1 \\
-3 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] \\
& A^{-1}=C^{T}=\left[\begin{array}{ccc}
7 & -3 & -3 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{det}(A)=\left[\begin{array}{lll}
1 & 3 & 3 \\
1 & 4 & 3 \\
1 & 3 & 4
\end{array}\right]=1\left|\begin{array}{ll}
4 & 3 \\
3 & 4
\end{array}\right|-1\left|\begin{array}{ll}
3 & 3 \\
3 & 4
\end{array}\right|+1\left|\begin{array}{ll}
3 & 3 \\
4 & 3
\end{array}\right|=7-3-3=1 \quad \text { (Using 1st column elements) }
$$

- The final matrix manipulation that will have utility in our discussion is augmentation. A matrix is augmented by the addition of a column (or columns) to the original matrix.
- For example, suppose that matrix A augmented with the column matrix B :

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad B=\left[\begin{array}{l}
b_{11} \\
b_{21}
\end{array}\right] \quad A=\left[\begin{array}{llll}
a_{11} & a_{12} & \vdots & b_{11} \\
a_{21} & a_{22} & \vdots & b_{21}
\end{array}\right]
$$

4.3.2 Cramer's Rule

- Determinant of 2 by 2 system: $\quad D=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}$
- Determinant of 3 by 3 system: $D=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

Cramer's Rule: Each unknown is calculated as a fraction of two determinants. The denominator is the determinant of the system, D . The numerator is the determinant of a modified system obtained by replacing the column of coefficients of the unknown being calculated by the right-hand-side (RHS) vector.

4.3.2 Cramer's Rule

$$
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}
$$

For a $3 x 3$ system:

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \quad \longrightarrow \quad[A]\{x\}=\{b\} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

$$
x_{1}=\frac{\left|\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right|}{D} \quad x_{2}=\frac{\left|\begin{array}{ccc}
a_{11} & b_{1} & a_{13} \\
a_{21} & b_{2} & a_{23} \\
a_{31} & b_{3} & a_{33}
\end{array}\right|}{D} \quad x_{3}=\frac{\left|\begin{array}{lll}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & b_{3}
\end{array}\right|}{D}
$$

Example: Use the Cramer's rule to solve

$$
\begin{aligned}
& 0.3 x_{1}+0.52 x_{2}+x_{3}=-0.01 \\
& 0.5 x_{1}+x_{2}+1.9 x_{3}=0.67 \\
& 0.1 x_{1}+0.3 x_{2}+0.5 x_{3}=-0.44
\end{aligned}
$$

The determinant D can be written as

$$
D=\left|\begin{array}{ccc}
0.3 & 0.52 & 1 \\
0.5 & 1 & 1.9 \\
0.1 & 0.3 & 0.5
\end{array}\right|
$$

$D=\left|\begin{array}{ccc}0.3 & 0.52 & 1 \\ 0.5 & 1 & 1.9 \\ 0.1 & 0.3 & 0.5\end{array}\right|=0.3(-0.07)-0.52(0.06)+1(0.05)=-0.0022$

The minors are

$$
\begin{aligned}
& A_{1}=\left|\begin{array}{cc}
1 & 1.9 \\
0.3 & 0.5
\end{array}\right|=1(0.5)-1.9(0.3)=-0.07 \\
& A_{2}=\left|\begin{array}{ll}
0.5 & 1.9 \\
0.1 & 0.5
\end{array}\right|=0.5(0.5)-1.9(0.1)=0.06 \\
& A_{3}=\left|\begin{array}{cc}
0.5 & 1 \\
0.1 & 0.3
\end{array}\right|=0.5(0.3)-1(0.1)=0.05
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{\left|\begin{array}{ccc}
-0.01 & 0.52 & 1 \\
0.67 & 1 & 1.9 \\
-0.44 & 0.3 & 0.5
\end{array}\right|}{-0.0022}=\frac{0.03278}{-0.0022}=-14.9 \\
& x_{2}=\frac{\left|\begin{array}{ccc}
0.3 & -0.01 & 1 \\
0.5 & 0.67 & 1.9 \\
0.1 & -0.44 & 0.5
\end{array}\right|}{-0.0022}=\frac{0.0649}{-0.0022}=-29.5 \\
& x_{3}=\frac{\left|\begin{array}{ccc}
0.3 & 0.52 & -0.01 \\
0.5 & 1 & 0.67 \\
0.1 & 0.3 & -0.44
\end{array}\right|}{-0.0022}=\frac{-0.04356}{-0.0022}=19.8
\end{aligned}
$$

