
Solutions of Linear Equation 
Systems



Introduction

• Many engineering and scientific problems can be formulated in terms 
of systems of simultaneous linear equations. 

• When these systems consist of only a few equations, a solution can 
be found analytically using the standard methods from algebra, such 
as substitution. 

• However, complex problems may involve a large number of equations 
that cannot realistically be solved using analytical methods. 

• In these cases, we will need to find the solution numerically using 
computers.



Example: Material Purchasing for Manufacturing

• Let us assume that a manufacturer is marketing a product made of an alloy 
material meeting a certain specified composition. 

• The three critical ingredients of the alloy are manganese, silicon, and copper. The 
specifications require 15 pounds of manganese, 22 pounds of silicon, and 39 
pounds of copper for each ton of alloy to be produced. 

• This mix of ingredients requires the manufacturer to obtain inputs from three 
different mining suppliers. 

• Ore from the different suppliers has different concentrations of the alloy 
ingredients, as detailed in Table. 

• Given this information, the manufacturer must determine the quantity of ore to 
purchase from each supplier so that the alloy ingredients are not wasted.



Solution



Using these notations, we can formulate a general equation that defines 
(1) the relationships among the compositions of the ore shipped by the different 

suppliers, 
(2) the amount of ore needed from each supplier, and 
(3) the required composition of the final alloy as

in which m is the number of ingredients and n 
is the number of suppliers. For the case under 
consideration, both m and n equal 3·



Example 2: Electrical Circuit Analysis

Current flows in circuits are governed by Kirchhoff’s laws. 

• Kirchhoff’s first law states that the algebraic sum of the currents 
flowing into a junction of a circuit must equal zero.

• Kirchhoff’s second law states that the algebraic sum of the 
electromotive forces around a closed circuit must equal the sum of 
the voltage drops around the circuit, where a voltage drop equals the 
product of the current and the resistance·



Example 2: Electrical Circuit Analysis
Applying Kirchhoff’s first law at junction c

Applying Kirchhoff’s second law to network 
loop acdb

Applying Kirchhoff’s second law to network 
loop aefb



Assume that R1 = 2, R2 = 4, R3 = 5, V1 = 6, and V2 = 2



General Form For A System of Equations

in which the aij terms are the known 
coefficients of the equations, the Xj 
terms are the unknown variables, 
and the Ci terms are the known 
constants.
 
Since values for both the aij and Ci 
terms will be known for any problem, 
the system of equations represents n 
linear equations with n unknowns.



Iterative Equation-Solving Methods

• Linear equations can be solved by
• Direct equation-solving methods like the Gaussian elimination method

• the solution is found after a fixed, predictable number of operations

• A trial-and-error procedure or iterative methods.

• the number of operations required to obtain a solution is not fixed

• a major advantage of iterative methods is that they can be used to solve 
nonlinear simultaneous equations, a task that is not possible using direct 
elimination methods

Two of the most common methods, 

• The Jacobi and 

• Gauss– Seidel procedures



Jacobi Iteration

for a single linear equation with a single 
unknown, it is straightforward to solve for the 
unknown

Idea:



Jacobi Iteration



Jacobi Iteration



Jacobi Iteration Generalization



Jacobi Iteration Generalization



Jacobi Iteration Generalization

The acceptable difference is set by the user and influenced 
by the need for accuracy·

or



Example: Jacobi Iteration

Given the following set of equations, solve for values of the unknowns 
using Jacobi iteration:



Solution

values of X1 = X2 = X3 = 1 for this initial 
estimate are assumed.

These new values for X1, X2, and X3 are then used 
as the new solution estimate.



This process is repeated until the 
differences between the previous values 
and the new values are small.



If a maximum absolute change of less than 0.05



Using a fixed number of iterations can be inefficient. 

We need a way to tell the solver to stop the iterations.

Convergence: When to Stop Iterating?

Successive calculations (iteration) continue until the 
tolerance value (TD) is satisfied



Gauss–Seidel Iteration (Multi-Step Iteration ) 
It is quite similar to the Jacobi method. 

• The only difference is; Substituting the calculated 𝑥𝑖 value into the 
next equation.

Idea: Always use most recent information.



Example

Solve: the following system of equations by taking 𝑇𝐷 = 0.05

An initial solution estimate of X1 = X2 = X3 = 1





If we re-arrange equations like



The first iteration cycle



The second iteration cycle





PIVOTING

• Pivoting is the displacement of rows in the coefficient matrix so that the diagonal 

elements are maximized in absolute value.



MATRICES

The case of determining the values x1, x2, . . . , xn
 that simultaneously satisfy a set of 

equations

• Such systems can be either linear or nonlinear. Linear algebraic equations that are of 

the general form 

(General set of equations)

where 

the a’s are constant coefficients, 

the b’s are constants, and 

n is the number of equations. 



• The system of linear equations given can be

represented in matrix form:

where 𝐴 is n x n Coefficient matrix

𝑥 is n x 1 Unknown vector

𝑏 is n x 1 Right-hand side (RHS) vector

𝐴 𝑥 = {𝑏}



4.2 Matrix

• A matrix consists of a rectangular array of elements represented by a single symbol. 

• [A] is the shorthand notation for the matrix and aij
 designates an individual element 

of the matrix. 

• A horizontal set of elements is called a row and a vertical set is called a column. The 

first subscript i always designates the number of the row in which the element lies. 

The second subscript j designates the column. 

n x m Matrix



Row Vector: Matrices with row dimension n = 1, such as

Column Vector: Matrices with column dimension n = 1, such as

Square Matrix: Matrices where n = m are called square matrices. For example, a 4 by 4 matrix is

The diagonal consisting of the elements a11, a22, a33, and a44
 is termed the principal or main diagonal of 

the matrix.



4.2.1 Special Types of Square Matrix

• A symmetric matrix is one where aij
 = aji

 for all i’s and j’s. For example, is a 3 by 

3 symmetric matrix.

• A diagonal matrix is a square matrix where all elements off the main diagonal are equal to zero, as in

𝐴 =

𝑎11
𝑎22

𝑎33
𝑎44

• An identity matrix is a diagonal matrix where all elements on the main diagonal are equal to 1, as in

𝐴 =

1
1

1
1

The symbol [I] is used to denote the identity matrix. The identity matrix has properties similar to unity.

Note that where large blocks of 

elements are zero, they are left 

blank.



• An upper triangular matrix is one where all the elements below the 

main diagonal are zero, as in

• An lower triangular matrix is one where all the elements above the 

main diagonal are zero, as in

• A banded matrix has all elements equal to zero, except for a band 

centered on the main diagonal:



4.2.2 Matrix Operations

• Addition of two matrices, say, [A] and [B], is accomplished by adding corresponding terms in each 

matrix. The elements of the resulting matrix [C] are computed,

cij = aij + bij

• Similarly, the subtraction of two matrices, say, [E] minus [F], is obtained by subtracting 

corresponding terms, as in

dij = eij − fij

• Addition and subtraction can be performed only between matrices having the same dimensions.

• Both addition and subtraction are commutative: 

[A] + [B] = [B] + [A]

• Addition and subtraction are also associative, that is,

([A] + [B]) + [C] = [A] + ([B] + [C])

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. 

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. 



• The multiplication of a matrix [A] by a scalar g is obtained by multiplying every element of [A] by g, 

as in

• The product of two matrices is represented as [C] = [A][B], where the elements of [C] are defined as 

where n = the column dimension of [A] and the row dimension of [B]. That is, the cij
 element is 

obtained by adding the product of individual elements from the ith row of the first matrix, in this case 

[A], by the jth column of the second matrix [B].

• According to this definition, multiplication of two matrices can be 

performed only if the first matrix has as many columns as the 

number of rows in the second matrix. 



• Suppose that we want to multiply [X] by [Y ] to yield [Z ],

• A simple way to visualize the computation of [Z ] is to raise [Y ], as in



• If the dimensions of the matrices are suitable, matrix multiplication is associative,

([A][B])[C] = [A]([B][C])

• and distributive,

[A]([B] + [C]) = [A][B] + [A][C]

or

([A] + [B])[C] = [A][C] + [B][C]

• However, multiplication is not generally commutative:

[A][B] ≠ [B][A]



• If a matrix [A] is square and nonsingular, there is another matrix [A]−1, called the inverse of [A], for 

which

[A][A]−1 = [A]−1[A] = [I ]

• The inverse of a two-dimensional square matrix can be represented simply by

• The transpose of a matrix involves transforming its rows into columns and its columns into rows.

• In other words, the element aij
 of the transpose is equal to the aji

 element of the original matrix.

• The trace of a matrix is the sum of the elements on its principal diagonal. It is designated as tr [A] and 

is computed as



• The determiant of a matrix is equal to the sum of the products of all elements in any row or column 

by their cofactors.

det(𝐴) = 𝐴 =

Cofactor matrix M is the matrix composed of multiplication of the minors of A by (-1)i+j: 



Example: Calculate the determinant and inverse of matrix A.

We need the cofactor matrix C of A to find the inverse and determinant of matrix A: 

𝐶 =

4 3
3 4

−
1 3
1 4

1 4
1 3

−
3 3
3 4

1 3
1 4

−
1 3
1 3

3 3
4 3

−
1 3
1 3

1 3
1 4

=
7 −1 −1
−3 1 0
−3 0 1

𝐴−1 = 𝐶𝑇 =
7 −3 −3
−1 1 0
−1 0 1

(Using 1st column elements)



• The final matrix manipulation that will have utility in our discussion is augmentation. A matrix is 

augmented by the addition of a column (or columns) to the original matrix. 

• For example, suppose that matrix A augmented with the column matrix B:

𝐴 =
𝑎11 𝑎12
𝑎21 𝑎22

𝐵 =
𝑏11
𝑏21

𝐴 =
𝑎11 𝑎12 ⋮ 𝑏11
𝑎21 𝑎22 ⋮ 𝑏21



4.3.2 Cramer’s Rule

• Determinant of 2 by 2 system:

• Determinant of 3 by 3 system:

minors

Cramer’s Rule: Each unknown is calculated as a fraction of two determinants. The denominator is the 

determinant of the system, D. The numerator is the determinant of a modified system obtained by 

replacing the column of coefficients of the unknown being calculated by the right-hand-side (RHS) vector.



4.3.2 Cramer’s Rule

For a 3x3 system: 

𝑥1 =

𝑏1 𝑎12 𝑎13
𝑏2 𝑎22 𝑎23
𝑏3 𝑎32 𝑎33

𝐷

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

𝑥2 =

𝑎11 𝑏1 𝑎13
𝑎21 𝑏2 𝑎23
𝑎31 𝑏3 𝑎33

𝐷
𝑥3 =

𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2
𝑎31 𝑎32 𝑏3

𝐷

𝐴 𝑥 = {𝑏}

Example: Use the Cramer’s rule to solve
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